Earth Science Resources – A Sampler

Spinning up new projects at work, which means learning about new topics, which means fun! Every night this week I’ve gotten to bring home a geology textbook, and let me tell you, I’m so enamored with science books. Especially ones with lots of cool pictures. And this one has many! The book is Physical Geology (11th ed.), by Plummer, Carlson, and McGeary. It seems to be intended for an introductory survey course at the college level, but motivated high school students could certainly glean a lot, and it’s got the photos and diagrams to draw in non-student science geeks also. Or maybe I shouldn’t generalize that way—but it at least drew in this non-student science geek.

Having been through lots and lots of science textbooks over the course of my academic career and in the time since, well, the books I tend to pick up the most often really are those introductory type texts. Maybe it has to do with the nature of working in education and exploring ways to teach a wide variety of topics, not necessarily at an expert level. Maybe it’s all those pretty pictures. At any rate, I thought I’d share a few of my favorite Earth science resources, and see if you wish to add any as well. Your recommendations are always welcome!

General Earth Science:
Dr. Art’s Guide to Planet Earth (Sussman). It says right on the cover that this book is for Earthling ages 12 to 120. That covers, well, lots of the population. Dr. Art takes the Earth system approach, looking at how the different components are interconnected. It’s effective. It’s basic information that a science literate public should understand. The font size is large and it’s divided into short topic sections so that even a non-science geek could get through it. I know it says 12 to 120, but maybe it should be bedtime reading for kids. Both you and they might take away a new understanding and appreciation of our planet.

Earth Science (Spaulding and Namowitz). This one is a high school textbook, but has a surprising amount of gems and nuggets of information on a full range of topics. I find it very entertaining and sometimes even enlightening reading, but we have already established that I am geek.

Astronomy:
Turn Left at Orion (Consolmago and Davis, 3rd ed). No, it’s not a textbook. But having taught night-sky programs for a lot of years, this one is a book I’d definitely replace if my dog ate it. [Actually, he did eat the binding, but the talented folks at Kinkos were able to remedy that for me.] I like it because it has the essential observing information (what to see, and where/how to find it) but also adds some science bits so if you’re trying to explain to someone what that cluster represents, or the ages of the stars in it, it’s all in that one place. Handy. Essential.

Geology:
Physical Geology (Plummer, Carlson, McGeary). Yes, already said, love the photos. And the really clear explanations with real-life scenarios. Maybe it’s because geology—like other Earth sciences—is just…relevant. Earth, it’s where we live. All that part and why I bother trying to teach, write, etc. about it. This book gave me a sense that the authors really shared that philosophy. Did I mention the awesome photos?

Meteorology:
Essentials of Meteorology (Ahrens). Alright, this one is actually on the bookshelf at work, so I can’t look up specific details right now, but it’s the introductory resource I point people to when asked. It’s another undergraduate introductory survey course text and explains the essentials (as its name indicates) without the math. And that can be refreshing for people who want to try to understand the concepts but don’t need all the equations for fluids and heat exchange etc. etc.

The Stories Clouds Tell (LeMone). I’ve already linked to a couple of Dr. LeMone’s backyard science articles on this blog, but this book actually dates back to a talk she gave in the late 1980s. It was first published by the American Meteorological Society and recently updated and re-released and it is beautiful. Like watching clouds? Want to know what they mean in terms of weather? This book has that information, plus very clear descriptions and diagrams of how clouds form, plus some amazing photos. If there’s ever to be a multimedia tutorial produced from this book, I want to be the one to do it, yes indeed.

Web resources:
Of course this category should be filled in, but I fear that would be an endless task. Check out the Digital Library for Earth System Education (DLESE) and the National Science Digital Library (NSDL). You can search for resources by topic and grade level. A visit to the Windows to the Universe site could show you some cool stuff, and will again provide information customizable to a specific grade level. There are oodles more: Google can help you get there, and I’ll post resources here now and again as I come across them.

In the meantime, happy reading and exploring!

The State of Science Knowledge, and Water on Earth & Moon

demographic breakdown of science knowledge survey results

This Science Knowledge Quiz from the Pew Research Center first entered my radar when Ian over at AstroBlog posted about it back in August. Even then, I knew it was destined to become blog fodder here at ScienceSpeak, and at last I am returning to the topic.

Ian’s correct: the questions are quite easy and the very large percentage of people who couldn’t correctly answer them is somewhat disheartening. However, because keeping up with and blogging on the science literacy topic can oftentimes be disheartening, I’m going to try to look at the bright side here. About 44% of people answered at least 9 of the 12 questions correctly, and that includes quiz takers with a high school education or less. I suppose it’s difficult to consider less than half of population receiving a passing grade as something other than bleak, but when it comes to recent scientific advances, news, discoveries, etc., sometimes you have to wonder, how *would* people know? It’s not covered in the media, or only very superficially covered in the media, and that’s a whole other topic (one covered very well in the book Unscientific America. Indeed, it’s almost enough to make a person not want to blog.)

So where are people supposed to learn about science? Well, in school, of course, but what if it’s been decades since you were a student? And what if you didn’t pay attention in science class? There’s this idea that if we keep putting the information out there, people will find it somehow. But those of us embarking on this experiment can testify that only people looking for the information will find it.

If you take the quiz on the Pew site, you can see the demographic breakdown of results, by question. There’s a clear age differential for some of them. Only 30% of people over age 65 correctly answered that an electron is smaller than an atom, for example. (Of course, electrons were discovered in the late 1800s, so age can’t be considered an excuse.) Just over 50% of all quiz takers correctly identified how stem cells differ from other cells, which is sad considering that stem cell research is something that has been politicized and so is often in the news, but again, how often do news anchors or politicians or even the researchers themselves actually address what a stem cell is?

Oh, it’s difficult. Maybe the only bright side is that there’s so much room for improvement. So I am going to begin posting scientific facts for my readership, and perhaps those who seek out the information will find it. Then, if they are someday surveyed on science knowledge by the Pew Research Center, they’ll perhaps be able to earn a passing score. If nothing else, maybe they’ll get darn good at getting that green pie in Trivial Pursuit.

For today’s simple science lesson, in honor of water just having been discovered on the Moon (yes, make a note of that, people!), let’s learn about water and the planet Earth. You can find some useful materials here and here. And if you want to learn more about how valuable water on Earth is becoming, look here.

Use Your (Correct) Words

This is weather.
weather observations, portland oregon

This is climate.
Gross Reservoir Colorado monthly climate data

They are not the same thing. The American Meteorological Society’s Glossary of Weather and Climate (AMS, 1996) defines weather as the state of the atmosphere at a particular time. Weather consists of the short-term variations of the atmosphere, on timescales of minutes to weeks. Climate, by contrast, is the total of all statistical weather information for a given place over a specified interval of time. Climate is a “synthesis” of weather, averaged over time periods of months to decades.

In the first figure above, air and dewpoint temperatures are plotted using hourly observations over a 72-hour period. In the second figure, the monthly-averaged maximum and minimum temperatures are shown based on data from 1978-2005. Individual weather events do not and cannot give information about the climate of the area, because weather is short term and climate is long term. People (even, unfortunately, some in the scientific community) often use the terms interchangeably, and in discussions of climate change, this carelessness with words provides a disservice.

A particularly warm or cold week in your hometown does not mean that climate change is or is not happening. It means that the weather that week was anomalously warm or anomalously cool compared to the long-term climatological average. And all averages also have a variability associated with them. We’ll go back to the AMS Glossary, in which climate variability “denotes deviations of climate statistics over a given period of time (e.g., a month, season, or year) from the long-term climate statistics relating to the corresponding calendar interval.” Variability is an inherent characteristic of the climate system: we know that even on average, no month or year is likely to behave exactly like the previous month or year.

Climate change, on the other hand, is “a significant change in the climatic state of a locale or large area, typically evident with a significant change in the mean (or average) values of a weather element.” A cold week or large precipitation event does not indicate climate change: we know from the definitions above that those are weather events. However, if the average temperature for July is significantly warmer than the average for all previous Julys on record, and this pattern happens for say three (or eight, or fifteen) Julys in a row, then by the definition what has been observed is a *change* in climate.

Most often, scientists refer to climate change on a global scale. But people care most about their locality, so here are temperature records for two continental U.S. locations. On the first figure, the temperature data themselves are plotted. The second figure shows the anomalies from the long-term average, along with global temperature anomalies and linear fits to both. Do the plots correspond to weather or climate? Do you see climate variability? What about climate change?

Minneapolis St Paul temperature record
Click image to view original data plot. Source: C. Fisk; Minnesota Climatology Working Group

North Carolina, globe temperature trends
Click image to view original data plot and summary. Source: State Climate Office of North Carolina

Flying by Mercury

New 2009 images of the planet Mercury
New 2009 images of the planet Mercury. Photo credits: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Left: This unnamed impact basin, with outer diameter approximately 260 km (160 mi), was seen for the first time on September 29, 2009, during MESSENGER’s third flyby of Mercury. Right: An unnamed crater viewed at close range for the first time on September 29, 2009, during MESSENGER’s third flyby of Mercury. The crater displays an arc-shaped depression known as a pit crater on its floor.

“Participated in collecting ground-breaking views of the last of the eight planets in the solar system to be fully seen.”

Not a bad line for a resume, especially if you are still a 6th grader.

Yesterday, NASA’s MESSENGER spacecraft flew by the planet Mercury on its way to establishing orbit around the nearest planet to the Sun in 2011.

The flyby’s ground support on Earth included a team of science educators working hand-in-hand with mission scientists. The science educators were onboard to communicate the findings to classrooms all across the U.S. and give students the opportunity to join in the adventure.

Students were invited to follow updates, ask questions, and participate in live conversations about the preliminary images in real-time as the data were streamed here to Earth. Such exciting opportunities for students to be on the cutting edge of learning about another part of our solar system don’t come along often. It’s also a chance for them to see how scientists approach the exploration process and go about interpreting data. The discussion will continue for a couple more days, so check it out. You can also get your own views of first-ever seen features of Mercury on the mission’s website.