Today’s Instructional Lesson: Seiches

A seiche is an oscillation associated with a standing wave that occurs in an enclosed or partially enclosed body of water, resulting from seismic activity or meteorological effects.

graphic of wind-driven seiche
Click to view this University of Wisconsin Sea Grant Institute animation of a wind-driven seiche. Seiches are not uncommon phenomena on the Great Lakes and adjacent bays and rivers.

Seiches have been observed on lakes, reservoirs, ponds, rivers, and even swimming pools. You can create your own seiche in your bathtub, just by rocking back and forth. At the right frequency, you can set up an oscillation–essentially a small-scale seiche–that allows the waves to grow until they overflow the bath.

A similar “sloshing”–in this case a seismic seiche–was observed on Saturday, February 27, on Lake Pontchartrain in Louisiana, caused by an earthquake 4,700 miles away off the coast of Maule, Chile. Lake Pontchartrain sits on the Mississippi Delta, which contains a deep layer of surface sediments. Seismic waves can resonate through this sediment more easily than through more firm surface types, making the Gulf region particularly sensitive to earthquake-induced seiches. The seiche affecting Lake Pontchartrain occurred 11 minutes after the 8.8 magnitude Chilean earthquake and resulted in water levels about 6 inches higher than the predicted tides.

Want the video version? Derek Kevra at WWLTV has a great explanation of the quake and resulting seiche here. And if you want to learn more about seiches in history, check out this page from the USGS Earthquake Hazards program.

Earthquake Education

First, if you’re inspired to help those in Haiti, please see this list of organizations compiled by CBS News. This tragedy teaches us lots of things, about life, and the human condition, and vulnerability, especially as it relates to this planet on which we live. And sticking with the idea of linking teachable moments with topics on this site, today let’s consider plate tectonics and its relation to where and how people live.

Plate tectonics refers to the movement of Earth’s crustal plates. Earth’s surface, or lithosphere, is composed of about 12 of these plates, which can move next to, over, under, toward, and away from each other.

graphic showing tectonic plates and boundaries

All of these tectonic movements can cause earthquakes or volcanoes, and the infamous Ring of Fire is marked by the boundaries of the Pacific Plate with the North American, Nazca, Australian, Philippine, and Eurasian plates.

The January 12, 2010, earthquake in Haiti resulted from a break on the southern fault zone between the Caribbean plate and the Gonave microplate. While this area is not one of the more active earthquake zones on the planet, major earthquakes have occurred, often with devastating results. The January 12 event occurred on a “strike-slip” fault—one in which adjacent plates are moving against each other. Strike-slip events tend to be shallow and can therefore produce violent shaking over a sizeable area. According to the U.S. Geologic Survey (USGS), the magnitude 7.0 earthquake caused strong and very strong shaking in Haiti, with moderate shaking in the Dominican Republic and weak or light shaking as far away as the Bahamas.

plot of shaking intensities for January 12 earthquake

Tuesday’s earthquake reminds us of something we sometimes forget: that oftentimes the regions we don’t consider vulnerable to earthquakes are indeed places where major destruction and loss of life can occur. Where could the next big one happen? Scientists have identified several places where geology and population combine with potentially dangerous results. A few of them are viewable here.